AP[®] CHEMISTRY 2011 SCORING GUIDELINES (Form B)

Question 1 (10 points)

Answer the following questions about the solubility and reactions of the ionic compounds $M(OH)_2$ and MCO_3 , where M represents an unidentified metal.

(a) Identify the charge of the M ion in the ionic compounds above.

2+	1 point is earned for the correct charge.
----	---

(b) At 25°C, a saturated solution of $M(OH)_2$ has a pH of 9.15.

(i) Calculate the molar concentration of $OH^{-}(aq)$ in the saturated solution.

pOH = 14 - pH	
pOH = 14 - 9.15 = 4.85	1 point is earned for the correct concentration.
$[OH^{-}] = 10^{-4.85} = 1.4 \times 10^{-5} M$	

(ii) Write the solubility-product constant expression for $M(OH)_2$.

$K_{sp} = [M^{2+}] [OH^{-}]^2$	1 point is earned for the correct expression.
--------------------------------	---

(iii) Calculate the value of the solubility-product constant, K_{sp} , for M(OH)₂ at 25°C.

$[M^{2+}] = \frac{1}{2}[OH^{-}] = \frac{1}{2}(1.4 \times 10^{-5} M) = 7.0 \times 10^{-6} M$ $K_{sn} = [M^{2+}][OH^{-}]^2 = (7.0 \times 10^{-6})(1.4 \times 10^{-5})^2$	1 point is earned for the correct relationship between $[M^{2+}]$ and $[OH^{-}]$.
$= 1.4 \times 10^{-15}$	1 point is earned for the correct value.

(c) For the metal carbonate, MCO₃, the value of the solubility-product constant, K_{sp} , is 7.4×10^{-14} at 25°C. On the basis of this information and your results in part (b), which compound, M(OH)₂ or MCO₃, has the greater molar solubility in water at 25°C? Justify your answer with a calculation.

For M(OH) ₂ : $[M^{2+}]$ and molar solubility = $7.0 \times 10^{-6} M$	1 point is earned for the
For MCO ₃ : $K_{sp} = 7.4 \times 10^{-14} = [M^{2+}][CO_3^{2-}]$	molar solubility of MCO_3 .
$[M^{2+}]$ and molar solubility = $2.7 \times 10^{-7} M$	1 point is earned for an answer
Because $7.0 \times 10^{-6} M > 2.7 \times 10^{-7} M$, M(OH) ₂ has the	consistent with the calculated
greater molar solubility.	molar solubility.

AP[®] CHEMISTRY 2011 SCORING GUIDELINES (Form B)

Question 1 (continued)

(d) MCO_3 decomposes at high temperatures, as shown by the reaction represented below.

 $MCO_3(s) \rightleftharpoons MO(s) + CO_2(g)$

A sample of MCO₃ is placed in a previously evacuated container, heated to 423 K, and allowed to come to equilibrium. Some solid MCO₃ remains in the container. The value of K_p for the reaction at 423 K is 0.0012.

(i) Write the equilibrium-constant expression for K_p of the reaction.

$K_p = P_{\text{CO}_2}$	1 point is earned for the correct expression.
-------------------------	---

(ii) Determine the pressure, in atm, of $CO_2(g)$ in the container at equilibrium at 423 K.

$P_{\rm CO_2} = 0.0012 \text{ atm}$	1 point is earned for the correct pressure.
-------------------------------------	---

(iii) Indicate whether the value of ΔG° for the reaction at 423 K is positive, negative, or zero. Justify your answer.

$\Delta G^{\circ} = -RT \ln K$	1 point is earned for the correct
$K = 0.0012 < 1$, thus $\ln K$ is negative; therefore ΔG° is positive.	answer with justification.